# Roadmap to Data Analysis 

## V. Comparing Counts -Chi-Square Test of Association

## Learning Objectives

- Understand the type of data that are relevant for a chi-square analysis
- Understand the basics of how chi-square works
- Understand how to use a chi-square calculator with example data
- Understand how to interpret results


## Type of Data for Chi-Square Analysis

- Categorical variables
- Counts of people, services, things
- "Frequency" - count of the number of cases in a particular category of a variable
- "Frequency distribution" - counts or percentages of the number of cases in each category of the variable
- The number of women and men in a treatment group
- The number of services used by clients in each ethnicity group
- The percent of an agency's clients who are employed full time, employed part time, or not employed
- The number of survey respondents who are "Dissatisfied", "Satisfied," or who have no opinion.


## How does Chi-Square work?

Based on a "cross-tabulation table" - showing the frequency distributions of two categorical variables. Here's an example: To monitor outreach activities, you want to know if there is any relationship between gender and engagement in treatment.

| Gender | In treatment |  | Not in treatment | Total |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Male | 20 | $29 \%$ | 50 | $71 \%$ | 70 <br> $(100 \%)$ |
| Female | 40 | $36 \%$ | 70 | $64 \%$ | 110 <br> $(100 \%)$ |
| Total | 60 | $33 \%$ | 120 | $67 \%$ | 180 <br> $(100 \%)$ |

## "Observed" vs. "Expected"

The chi-square statistic quantifies the relationship between the observed values (shown in the previous slide) compared to the expected values - what you would expect to see if there was no relationship between gender and engagement treatment.

| Gender | In treatment <br> (expected values) | Not in treatment <br> (expected values) | Total |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Male | 35 | $50 \%$ | 35 | $50 \%$ | 70 <br> $(100 \%)$ |
| Female | 55 | $50 \%$ | 55 | $50 \%$ | 110 <br> $(100 \%)$ |
| Total | 90 | $50 \%$ | 90 | $50 \%$ | 180 <br> $(100 \%)$ |

## Using a Chi-Square Calculator

- Go to http://graphpad.com/quickcalcs/contingency1/
- Or, via the HealTorture.org website:
http://www.healtorture.org/content/basic-statistical-methods
- Use the contingency table calculator
- Enter the observed counts or observed percentages in the empty cells. Also, enter your own column and row headings (see example, next slide)
- Choose "Chi-square with Yates correction"*
- Click "Calculate"
*For smaller samples, i.e. when at least one cell has fewer than 5 observations, choose "Fisher's exact test" for a more accurate analysis


## Enter data (observed counts)

|  | In treatment | Not in treatment |
| :--- | :--- | :--- |
| Male | 20 | 50 |
| Female | 40 | 70 |

## Results—as shown in Calculator

| In treatment |  |  |  |
| :---: | ---: | ---: | ---: |
|  | Not in treatment | Total |  |
| Male | 20 | 50 | $\mathbf{7 0}$ |
| Female | 40 | 70 | 110 |
| Total | 60 | 120 | 180 |

Chi-square with Yates correction
Chi squared equals 0.844 with 1 degrees of freedom.
The two-tailed $\mathbf{P}$ value equals $\mathbf{0 . 3 5 8 1}$
The association between rows (groups) and columns (outcomes) is considered to be not statistically significant.

## Interpret results

- Since the $p$ value is greater than 05 ( $p=0.36$ ), you can conclude that there is no evidence of a relationship between gender and engagement in treatment (in other words, no statistically significant difference between the observed and expected values)
- To report chi-square results formally:
"In our agency sample, there was no relationship between gender and engagement in treatment, $\chi^{2}=0.84, d f=1, p=$ 0.36."
- The symbol for chi-square is $\chi^{2}$ (as chosen by the statistician Karl Pearson - hence the "Pearson chi-square" statistic)
- The "degrees of freedom" (df) has to do with how the chisquare statistic is distributed theoretically, based on the number of cells in the cross-tabulation table. It is required to calculate the $p$ value and typically reported.

